14 research outputs found

    Evolution of force networks in dense granular matter close to jamming

    Full text link
    When dense granular systems are exposed to external forcing, they evolve on the time scale that is typically related to the externally imposed one (shear or compression rate, for example). This evolution could be characterized by observing temporal evolution of contact networks. However, it is not immediately clear whether the force networks, defined on contact networks by considering force interactions between the particles, evolve on a similar time scale. To analyze the evolution of these networks, we carry out discrete element simulations of a system of soft frictional disks exposed to compression that leads to jamming. By using the tools of computational topology, we show that close to jamming transition, the force networks evolve on the time scale which is much faster than the externally imposed one. The presentation will discuss the factors that determine this fast time scale.Comment: to appear in Powders and Grains, 201

    A Comparison Framework for Interleaved Persistence Modules

    Get PDF
    We present a generalization of the induced matching theorem and use it to prove a generalization of the algebraic stability theorem for R\mathbb{R}-indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance

    Quantitative Measure of Memory Loss in Complex Spatio-Temporal Systems

    Get PDF
    To make progress in understanding the issue of memory loss and history dependence in evolving complex systems, we consider the mixing rate that specifies how fast the future states become independent of the initial condition. We propose a simple measure for assessing the mixing rate that can be directly applied to experimental data observed in any metric space XX. For a compact phase space X⊂RMX \subset R^M, we prove the following statement. If the underlying dynamical system has a unique physical measure and its dynamics is strongly mixing with respect to this measure, then our method provides an upper bound of the mixing rate. We employ our method to analyze memory loss for the system of slowly sheared granular particles with a small inertial number II. The shear is induced by the moving walls as well as by the linear motion of the support surface that ensures approximately linear shear throughout the sample. We show that even if II is kept fixed, the rate of memory loss (considered at the time scale given by the inverse shear rate) depends erratically on the shear rate. Our study suggests a presence of bifurcations at which the rate of memory loss increases with the shear rate while it decreases away from these points. We also find that the memory loss is not a smooth process. Its rate is closely related to frequency of the sudden transitions of the force network. The loss of memory, quantified by observing evolution of force networks, is found to be correlated with the loss of correlation of shear stress measured on the system scale. Thus, we have established a direct link between the evolution of force networks and macroscopic properties of the considered system

    Characterizing Granular Networks Using Topological Metrics

    Get PDF
    We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range form microscopic, through mesoscopic to system-wide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between micro and macro scales. We report two main findings: the number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress tensor derived measures and contact numbers depend in a universal manner on the fraction of non-rattler particles, fNRf_{NR}. The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both fNRf_{NR} and topological metrics are useful measures to consider when quantifying the state of a granular system.Comment: 8 pages, 8 figure

    Topological data analysis of contagion maps for examining spreading processes on networks

    Get PDF
    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges -- for example, due to airline transportation or communication media -- allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct "contagion maps" that use multiple contagions on a network to map the nodes as a point cloud. By analyzing the topology, geometry, and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modeling, forecast, and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.Comment: Main Text and Supplementary Informatio
    corecore